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Abstract 

Tourism plays a strategic role in supporting global economic growth, particularly in developing countries. This sector significantly 

contributes to the increase of Gross Domestic Product (GDP) and the reduction of poverty rates. However, predicting the number 

of tourist arrivals remains a challenge due to seasonal patterns. The Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model is commonly used to address this issue, yet selecting optimal parameters within the SARIMA model remains 

complex. This study aims to optimize parameter selection and improve the accuracy of tourist arrival forecasts in Kuningan 

Regency through a hybrid approach that integrates SARIMA with a Genetic Algorithm (GA). The Genetic Algorithm is employed 

to automate and optimize the parameter selection process in the SARIMA model. Experiments were conducted using various 

combinations of population sizes (50 and 100) and generations (10, 20, and 50) to determine the best configuration. The results 

indicate that the integration of GA and SARIMA effectively overcomes the limitations of conventional SARIMA in parameter 

optimization and recognizing complex data patterns. Increasing the number of generations tends to enhance model accuracy, albeit 

at the cost of increased computational time. The best model was obtained with the SARIMA (9, 0, 5) × (0, 1, 2, 12) configuration, 

yielding a Mean Absolute Error (MAE) of 15,507.07. These findings demonstrate that the GA-SARIMA hybrid approach has 

strong potential to enhance seasonal data forecasting performance, particularly in the tourism sector. 
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1. Introduction 

Tourism has long been recognized as a key driver of economic growth and development [1]. Globally, tourism is one 

of the primary sectors that generate substantial employment opportunities, contribute significantly to national income, 

and promote economic prosperity [2]. A 1% increase in the tourism sector in developing countries can significantly 

boost Gross Domestic Product (GDP) by 0.051%, Foreign Direct Investment (FDI) by 2.647%, energy development 

by 0.134%, and agricultural development by 0.26%, while also reducing poverty by 0.51% in the long term [3]. 

Forecasting is a crucial initial step in investment decision-making and planning [4]. Accurate forecasting is essential 

for tourism destinations, where decision-makers and business managers strive to optimize sectoral growth while 

maintaining local environmental sustainability and economic performance [5]. 

One of the most widely used and effective forecasting algorithms is the Seasonal and Non-Seasonal Autoregressive 

Integrated Moving Average (SARIMA and ARIMA) models [6], [7], [8]. The ARIMA model, based on the Box-

Jenkins approach, can be used to predict future trends by transforming data into a stationary series and eliminating 

seasonal patterns [9]. The SARIMA model is particularly useful when the data exhibit seasonal periodic fluctuations 
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that frequently recur within a year [10]. Therefore, SARIMA is a more suitable model for forecasting tourist arrivals 

due to its ability to capture seasonal trends. 

However, SARIMA has certain limitations in optimizing results, particularly in selecting the best parameter values for 

𝑝, 𝑑, 𝑞 as well as 𝑃, 𝐷, 𝑄 [10]. Here, 𝑝 represents the order of Auto-Regression (AR), 𝑞 is the order of the Moving 

Average (MA), and 𝑑 is the differencing order required to make the time series stationary. Similarly, 𝑃, 𝐷, 𝑄 represent 

the seasonal AR component, seasonal moving average component, and seasonal differencing component, respectively 

[11]. Finding the optimal combination of these parameter values requires repetitive trial-and-error processes to achieve 

the best forecasting performance. 

The selection of the best parameter combination for SARIMA and ARIMA models can be enhanced using Genetic 

Algorithms (GA), which help determine the optimal model configuration [10], [12], [13], [14], [15]. The 

implementation of a Genetic Algorithm facilitates the automatic selection of optimal parameter values and significantly 

reduces forecasting time. Based on these considerations, this study employs the SARIMA model optimized with 

Genetic Algorithms as a solution to forecast tourist arrivals in Kuningan Regency. 

2. Method 

This study employs a hybrid approach combining the Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model and Genetic Algorithm (GA) for forecasting the number of tourists in Kuningan Regency. The overall research 

stages are illustrated in Figure 1. 

 

Fig. 1. Research Diagram 

2.1. Data Preparation 

The data used in this study consists of the number of tourist arrivals in Kuningan Regency from January 2016 to 

December 2023. The dataset is collected and structured for analysis and forecasting using the SARIMA model. 

2.2. SARIMA Optimization Using Genetic Algorithm 

The SARIMA model optimization is conducted by utilizing the Genetic Algorithm to determine the optimal model 

parameters. This optimization process involves several key stages of the Genetic Algorithm, including initial 

population generation, selection, crossover, mutation, and new population formation. 

2.2.1. Initial Population Generation 

The initial population is generated by randomly selecting parameter values for the SARIMA model, including (p, d, q, 

P, D, Q), using a random generator technique. Each individual in the population represents a unique SARIMA model. 
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2.2.2. Individual Selection 

The selection process is performed using the Tournament Selection method. In this method, a subset of individuals is 

randomly chosen from the population, paired, and compared based on their fitness values [16]. The individual with the 

lowest Mean Absolute Error (MAE) from each comparison is selected to proceed to the next stage. 

2.2.3. Crossover 

The crossover stage is carried out using the Two-point Crossover method. Two points on an individual's chromosome 

are randomly selected, and the genes between these points are exchanged between two individuals to generate new 

offspring [16]. 

2.2.4. Mutation 

Mutation is performed using the uniform integer mutation method. In this stage, one or more genes in an individual's 

chromosome are replaced with new values randomly selected from the predefined parameter range [17]. 

2.2.5. New Population Formation 

The crossover and mutation processes generate a new population for the next iteration. This process is repeated until 

the maximum number of generations is reached. The individual with the lowest MAE is considered the optimal solution 

for the SARIMA model. 

2.3. SARIMA Model Evaluation 

The SARIMA model obtained through the optimization process is evaluated by testing the significance of its 

parameters. This test ensures that the selected parameters contribute significantly to the model's performance. 

Additionally, a diagnostic test is conducted using the Ljung-Box autocorrelation test on the model's residuals to confirm 

that the residuals exhibit no significant autocorrelation and follow a white noise pattern. 

2.4. Model Accuracy Assessment 

The optimized SARIMA model's accuracy is assessed using several evaluation metrics, including Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 

(MAPE). These metrics provide insights into the model's forecasting accuracy. 

2.5. Future Forecasting 

Once the optimal SARIMA model is established and validated, it is used to forecast future tourist arrivals. The 

forecasting results provide insights into future trends in tourist numbers in Kuningan Regency. This information can 

serve as a basis for strategic planning and decision-making in the tourism sector. 

3. Results and Discussion 

3.1. Tourist Arrival Data in Kuningan Regency 

The dataset used in this study consists of monthly tourist arrival data in Kuningan Regency from 2016 to 2023. This 

data was obtained from Open Data Kuningan and produced by the Tourism Office of Kuningan Regency. The dataset 

comprises 96 observations, with data from 2016 to 2022 used as the training set, while data from 2023 was used to test 

the model's performance. Table 1 presents a summary of the number of tourists (in thousands) per month over the 

research period. 

Table 1. Total Number of Tourists in Kuningan Regency (thousands) 

Year Jan Feb Mar Apr Mei Jun Jul Agu Sep Okt Nov Des 
2016 282 83 89 90 115 31 347 98 121 136 144 204 

2017 166 98 111 137 135 295 184 126 120 124 219 309 

2018 162 90 99 110 114 382 157 146 151 147 127 462 

2019 193 113 126 140 57 462 186 160 176 180 177 360 

2020 209 116 53 - - 24 122 180 129 142 147 149 

2021 163 87 121 71 259 73 - 75 131 150 115 119 

2022 162 99 103 28 302 133 176 119 119 130 98 160 

2023 167 99 83 87 128 144 122 110 137 123 114 240 

 



/ JADSaML 00 (2024) 000–000 

 

3.2. SARIMA Optimization Using Genetic Algorithm 

This study implements a combination of the SARIMA model and Genetic Algorithm (GA) to predict the number of 

tourists in Kuningan Regency. The optimization process involves evaluating various combinations of population size 

and the number of generations to determine the best configuration based on Mean Absolute Error (MAE) and 

computational time. The experiment was conducted on a system with the following specifications: 

• Operating System: Windows 11 64-bit 

• Processor: Intel Core i5-9300H @ 2.40 GHz 

• Memory: 16 GB DDR4 

• Storage: 512 GB SSD 

3.2.1. Model Implementation and Evaluation 

Different combinations of population size (50 and 100) and the number of generations (10, 20, and 50) were tested to 

optimize the SARIMA parameters. The experimental results indicate that increasing the population size and the number 

of generations generally leads to longer computational time but also improves prediction accuracy. The computational 

time for each configuration is visualized in Figure 2. 

 

Fig. 2. SARIMA Model Search Results 

3.2.2. Hasil Optimasi 

Table 2 summarizes the optimization results. The best configuration was obtained with a population size of 50 and 50 

generations, yielding a SARIMA model with parameters (9, 0, 5) × (0, 1, 2, 12). This model achieved an MAE of 

15,507.07 with a computation time of 16,309.41 seconds. 

Table 2. SARIMA Model Optimization Results 

Populasi Gen Model MAE Waktu (detik) 
50 10 (8, 0, 3) × (5, 1, 0, 12) 25273.1 5796.56 

50 20 (7, 0, 0) × (0, 1, 2, 12) 18343.29 10101.93 

50 50 (9, 0, 5) × (0, 1, 2, 12) 15507.07 16309.41 

100 10 (1, 0, 1) × (1, 1, 1, 12) 24131.44 9004.17 

100 20 (0, 0, 6) × (2, 1, 1, 12) 20353.75 13822.92 

100 50 (6, 0, 5) × (0, 1, 2, 12) 16024.92 14275.87 

 

3.3.  SARIMA Model Evaluation 

The process of developing an optimal Seasonal Autoregressive Integrated Moving Average (SARIMA) model 

considers the characteristics of the data and several evaluation criteria, including the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

Mean Absolute Percentage Error (MAPE). In this study, MAE was used as the primary indicator for selecting the best 

SARIMA model to forecast the number of tourists in Kuningan Regency. 

Among the various models generated, SARIMA (9, 0, 5) × (0, 1, 2, 12) was selected as the model with the lowest 

MAE. This model was then tested for parameter significance, as presented in Table 3. The analysis results indicate that 

only the ma.S.L12 parameter is significant (p-value = 0.038), while the other parameters are not significant (p-value > 
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0.05). Based on these findings, an alternative model, SARIMA (1, 0, 1) × (1, 1, 1, 12), was explored, with its parameter 

significance test results shown in Table 4. The alternative model demonstrates that all parameters are statistically 

significant (p-value < 0.05). 

Table 3. Parameter Significance Test Results for SARIMA (9, 0, 5) × (0, 1, 2, 12) 

Term Coefficient Std Err z P>|z| [0.025 0.975] 

ar.L1 0.2122 1.424 0.149 0.882 -2.578 3.002 

ar.L2 0.5887 0.885 0.665 0.506 -1.147 2.324 

ar.L3 -0.6853 1.078 -0.636 0.525 -2.799 1.428 

ar.L4 -0.2445 0.879 -0.278 0.781 -1.966 1.477 

ar.L5 -0.1138 0.682 -0.167 0.867 -1.450 1.222 

ar.L6 0.4928 0.261 1.888 0.059 -0.019 1.004 

ar.L7 0.0169 0.572 0.029 0.976 -1.104 1.137 

ar.L8 -0.2573 0.347 -0.742 0.458 -0.937 0.423 

ar.L9 0.2624 0.331 0.793 0.428 -0.386 0.911 

ma.L1 -0.1732 1.551 -0.112 0.911 -3.214 2.867 

ma.L2 -0.4708 1.100 -0.428 0.669 -2.628 1.686 

ma.L3 0.7430 1.045 0.711 0.477 -1.305 2.791 

ma.L4 0.2665 0.860 0.310 0.757 -1.419 1.952 

ma.L5 0.0935 0.680 0.137 0.891 -1.240 1.427 

ma.S.L12 -0.5771 0.278 -2.073 0.038 -1.123 -0.032 

ma.S.L24 -0.2803 0.298 -0.940 0.347 -0.865 0.304 

sigma2 5.141e+09 6.67e-10 7.7e+18 0.000 5.14e+09 5.14e+09 

Table 4. Parameter Significance Test Results for SARIMA (1, 0, 1) × (1, 1, 1, 12) 

Term Coefficient Std Err z P>|z| [0.025 0.975] 
ar.L1 0.9796 0.051 19.352 0.000 0.880 1.079 

ma.L1 -0.9199 0.078 -11.798 0.000 -1.073 -0.767 

ar.S.L12 0.4569 0.250 1.830 0.047 -0.032 0.946 

ma.S.L12 -0.8950 0.253 -3.533 0.000 -1.391 -0.398 

sigma2 7.885e+09 6.2e-11 1.27e+20 0.000 7.89e+09 7.89e+09 

 

To test the residual assumptions, the Ljung-Box test was conducted, with results presented in Table 5. The analysis 

shows that the SARIMA (9, 0, 5) × (0, 1, 2, 12) model has a p-value of 0.960, indicating no significant autocorrelation 

in the residuals, thus satisfying the white noise assumption. In contrast, the SARIMA (1, 0, 1) × (1, 1, 1, 12) model has 

a p-value of 0.048, indicating significant autocorrelation in the residuals. 

Table 5. Ljung-Box Test Results 

Model Ljung-Box Statistic p-value 

SARIMA (9, 0, 5) × (0, 1, 2, 12) 4.925579 0.960419 

SARIMA (1, 0, 1) × (1, 1, 1, 12) 21.159175 0.048098 

Based on diagnostic results and evaluation criteria, the SARIMA (9, 0, 5) × (0, 1, 2, 12) model was selected as the best 

model. Although some of its parameters are not significant, this model meets diagnostic criteria and exhibits superior 

prediction accuracy. Moreover, this model aligns with findings in the literature [10]. The optimization of SARIMA 

models depends not only on parameter significance but also on meeting diagnostic assumptions and providing accurate 

forecasts. 

3.4. Model Accuracy Assessment 

The tourist arrival data for Kuningan Regency was divided into two subsets: training data (January 2016–December 

2022) and testing data (January 2023–December 2023). SARIMA (9, 0, 5) × (0, 1, 2, 12) was selected as the best model 

based on performance evaluation. To assess the forecasting performance, several accuracy metrics were used, including 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). Table 6 presents the forecasting results for 2023 along with accuracy metrics. 
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Table 6. SARIMA (9, 0, 5) × (0, 1, 2, 12) Model Accuracy Results 

Period Actual Data Prediction MSE RMSE MAE MAPE (%) 
23-Jan 167042 160925.69 3.74E+07 6116.31 6116.31 3.66 

23-Feb 99057 107729.79 7.52E+07 8672.79 8672.79 8.76 

23-Mar 82831 89250.13 4.12E+07 6419.13 6419.13 7.75 

23-Apr 87185 81745.9 2.96E+07 5439.1 5439.1 6.24 

23-May 127568 170342.06 1.83E+09 42774.06 42774.06 33.53 

23-Jun 144117 153235 8.31E+07 9118 9118 6.33 

23-Jul 122304 137626.4 2.35E+08 15322.4 15322.4 12.53 

23-Aug 110208 117409.68 5.19E+07 7201.68 7201.68 6.53 

23-Sep 137015 95650.38 1.71E+09 41364.62 41364.62 30.19 

23-Oct 123244 138375.15 2.29E+08 15131.15 15131.15 12.28 

23-Nov 114286 112719.34 2.45E+06 1566.66 1566.66 1.37 

23-Dec 240320 213361.1 7.27E+08 26958.9 26958.9 11.22 

Final Result - - 4.21E+08 20518.35 15507.07 11.7 

The evaluation results indicate that the model performs well, with an average RMSE of 20,518.35 and a MAPE of 

11.7%. Based on general classification, a MAPE value in the range of 10%–20% is considered good  [18]. This suggests 

that the model has a reasonably adequate level of accuracy for projecting monthly tourist arrivals in Kuningan Regency. 

3.5. Future Forecasting 

The SARIMA (9, 0, 5) × (0, 1, 2, 12) model was used to project the number of monthly tourists in Kuningan Regency 

for the year 2024. Utilizing historical data, this model generated predictions reflecting tourist trends during the period. 

Table 7 presents the forecasted tourist arrivals for each month of 2024. 

Tabel 1. Future Forecasting Results 

Period Predicted Tourists 
24-Jan 160,925.69 

24-Feb 107,729.79 

24-Mar 89,250.13 

24-Apr 81,745.90 

24-May 170,342.06 

24-Jun 153,235.00 

24-Jul 137,626.40 

24-Aug 117,409.68 

24-Sep 95,650.38 

24-Oct 138,375.15 

24-Nov 112,719.34 

24-Dec 213,361.10 

 

4. Conclusion 

The results obtained indicate that the integration of the Genetic Algorithm (GA) with the SARIMA model successfully 

addresses the limitations of traditional SARIMA in parameter optimization and recognizing complex data patterns. 

Experiments with varying population sizes (50 and 100) and generations (10, 20, and 50) demonstrate that increasing 

the number of generations tends to enhance model accuracy, although it also increases computational time. The best 

model, with the lowest Mean Absolute Error (MAE), was obtained using the SARIMA (9, 0, 5) × (0, 1, 2, 12) 

configuration, achieving an MAE of 15,507.07. These findings suggest that the proposed approach holds significant 

potential for improving the forecasting performance of seasonal data, such as tourism data. 

Further development could involve implementing a parallel genetic algorithm to reduce computational time, thereby 

enhancing the efficiency of optimal parameter search without sacrificing forecasting accuracy. Additionally, broader 

variations in parameters, population sizes, and generations could be explored to identify a more optimal configuration. 
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